
Erstellen von selbstoptimierenden Expert Advisor in MQL5 (Teil 5): Selbstanpassende Handelsregeln
Die besten Praktiken, die festlegen, wie ein Indikator sicher zu verwenden ist, sind nicht immer leicht zu befolgen. Bei ruhigen Marktbedingungen kann der Indikator überraschenderweise Werte anzeigen, die nicht als Handelssignal gelten, was dazu führt, dass algorithmischen Händlern Chancen entgehen. In diesem Artikel wird eine mögliche Lösung für dieses Problem vorgeschlagen, da wir erörtern, wie Handelsanwendungen entwickelt werden können, die ihre Handelsregeln an die verfügbaren Marktdaten anpassen.

Automatisieren von Handelsstrategien in MQL5 (Teil 4): Aufbau eines mehrstufigen Zone Recovery Systems
In diesem Artikel entwickeln wir ein mehrstufiges Zone Recovery System in MQL5, das den RSI zur Erzeugung von Handelssignalen nutzt. Jede Signalinstanz wird dynamisch zu einer Array-Struktur hinzugefügt, sodass das System mehrere Signale gleichzeitig innerhalb der Zonenwiederherstellungslogik verwalten kann. Mit diesem Ansatz zeigen wir, wie man komplexe Handelsverwaltungsszenarien effektiv handhabt und gleichzeitig einen skalierbaren und robusten Codeentwurf beibehält.

Einführung in MQL5 (Teil 11): Eine Anleitung für Anfänger zur Arbeit mit integrierten Indikatoren in MQL5 (II)
Entdecken Sie, wie man einen Expert Advisor (EA) in MQL5 entwickelt, der mehrere Indikatoren wie RSI, MA und Stochastik-Oszillator verwendet, um versteckte steigende und fallende Divergenzen zu erkennen. Lernen Sie, ein effektives Risikomanagement zu implementieren und den Handel zu automatisieren - mit detaillierten Beispielen und vollständig kommentiertem Quellcode für Ausbildungszwecke!

Selbstoptimierende Expert Advisor in MQL5 (Teil 4): Dynamische Positionsgrößen
Der erfolgreiche Einsatz des algorithmischen Handels erfordert kontinuierliches, interdisziplinäres Lernen. Die unendlichen Möglichkeiten können jedoch jahrelange Bemühungen verschlingen, ohne greifbare Ergebnisse zu liefern. Um dieses Problem zu lösen, schlagen wir einen Rahmen vor, der die Komplexität schrittweise einführt und es den Händlern ermöglicht, ihre Strategien iterativ zu verfeinern, anstatt sich für unbestimmte Zeit auf ungewisse Ergebnisse festzulegen.

Implementierung des kryptografischen SHA-256-Algorithmus von Grund auf in MQL5
Die Entwicklung DLL-freier Integrationen von Kryptowährungsbörsen war lange Zeit eine Herausforderung, aber diese Lösung bietet ein komplettes Framework für die direkte Marktanbindung.

Integrieren Sie Ihr eigenes LLM in einen EA (Teil 5): Handelsstrategie mit LLMs(IV) entwickeln und testen - Test der Handelsstrategie
Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.

Entwicklung eines Expert Advisors in MQL5 für Ausbrüche nach kalenderbasierten Nachrichtenereignissen
Die Volatilität erreicht ihren Höhepunkt in der Regel in der Nähe von Ereignissen mit hohem Nachrichtenwert, wodurch sich erhebliche Ausbruchschancen ergeben. In diesem Artikel werden wir den Umsetzungsprozess einer kalenderbasierten Ausbruch-Strategie skizzieren. Wir werden alles von der Erstellung einer Klasse zur Interpretation und Speicherung von Kalenderdaten über die Entwicklung realistischer Backtests mit diesen Daten bis hin zur Implementierung von Ausführungscode für den Live-Handel behandeln.

Die Handelsstrategie Inverse Fair Value Gap
Eine Inverse Fair Value Gap (IFVG) liegt vor, wenn der Kurs in eine zuvor ermittelte „Fair Value Gap“ abprallt und statt der erwarteten unterstützenden oder Widerstandsreaktion diese nicht einhält. Dieses Scheitern kann eine potenzielle Veränderung der Marktrichtung signalisieren und einen konträren Handelsvorteil bieten. In diesem Artikel werde ich meinen selbst entwickelten Ansatz zur Quantifizierung und Nutzung der inversen Fair Value Gap als Strategie für MetaTrader 5 Expert Advisors vorstellen.

Die Strategie des Handel eines Liquiditätshungers
Die Strategie des Handel eines Liquiditätshungers (liquidity grab) ist eine Schlüsselkomponente von Smart Money Concepts (SMC), die darauf abzielt, die Aktionen institutioneller Marktteilnehmer zu identifizieren und auszunutzen. Dabei werden Bereiche mit hoher Liquidität, wie z. B. Unterstützungs- oder Widerstandszonen, ins Visier genommen, in denen große Aufträge Kursbewegungen auslösen können, bevor der Markt seinen Trend wieder aufnimmt. In diesem Artikel wird das Konzept des Liquiditätshungers im Detail erklärt und der Entwicklungsprozess des Expert Advisor der Liquiditätshunger-Handelsstrategie in MQL5 skizziert.

Neuronale Netze im Handel: Kontrollierte Segmentierung (letzter Teil)
Wir setzen die im vorigen Artikel begonnene Arbeit am Aufbau des RefMask3D-Frameworks mit MQL5 fort. Dieser Rahmen wurde entwickelt, um multimodale Interaktion und Merkmalsanalyse in einer Punktwolke umfassend zu untersuchen, gefolgt von der Identifizierung des Zielobjekts auf der Grundlage einer in natürlicher Sprache gegebenen Beschreibung.

Neuronale Netze im Handel: Verallgemeinerte 3D-Segmentierung von referenzierten Ausdrücken
Bei der Analyse der Marktsituation unterteilen wir den Markt in einzelne Segmente und ermitteln die wichtigsten Trends. Herkömmliche Analysemethoden konzentrieren sich jedoch oft auf einen Aspekt und schränken so die richtige Wahrnehmung ein. In diesem Artikel lernen wir eine Methode kennen, die die Auswahl mehrerer Objekte ermöglicht, um ein umfassenderes und vielschichtigeres Verständnis der Situation zu gewährleisten.

Vorhersage von Wechselkursen mit klassischen Methoden des maschinellen Lernens: Logit- und Probit-Modelle
In diesem Artikel wird der Versuch unternommen, einen Handels-EA zur Vorhersage von Wechselkursen zu erstellen. Der Algorithmus basiert auf klassischen Klassifikationsmodellen - logistische und Probit-Regression. Das Kriterium des Wahrscheinlichkeitsquotienten wird als Filter für Handelssignale verwendet.

Neuronale Netze im Handel: Maskenfreier Ansatz zur Vorhersage von Preisentwicklungen
In diesem Artikel wird die Methode MAFT (Mask-Attention-Free Transformer) und ihre Anwendung im Bereich des Handels diskutiert. Im Gegensatz zu herkömmlichen Transformer, die bei der Verarbeitung von Sequenzen eine Datenmaskierung erfordern, optimiert MAFT den Aufmerksamkeitsprozess, indem es die Maskierung überflüssig macht und so die Rechenleistung erheblich verbessert.

Neuronale Netze im Handel: Superpoint Transformer (SPFormer)
In diesem Artikel stellen wir eine Methode zur Segmentierung von 3D-Objekten vor, die auf dem Superpoint Transformer (SPFormer) basiert und bei der die Notwendigkeit einer zwischengeschalteten Datenaggregation entfällt. Dadurch wird der Segmentierungsprozess beschleunigt und die Leistung des Modells verbessert.

Neuronale Netze im Handel: Erforschen lokaler Datenstrukturen
Die effektive Identifizierung und Erhaltung der lokalen Struktur von Marktdaten unter verrauschten Bedingungen ist eine wichtige Aufgabe im Handel. Die Verwendung des Mechanismus der Selbstaufmerksamkeit hat vielversprechende Ergebnisse bei der Verarbeitung solcher Daten gezeigt; der klassische Ansatz berücksichtigt jedoch nicht die lokalen Merkmale der zugrunde liegenden Struktur. In diesem Artikel stelle ich einen Algorithmus vor, der diese strukturellen Abhängigkeiten berücksichtigen kann.

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 18): Automatisierte Gruppenauswahl unter Berücksichtigung der Vorwärtszeitraum
Fahren wir fort, die Schritte zu automatisieren, die wir zuvor manuell durchgeführt haben. Diesmal kehren wir zur Automatisierung der zweiten Phase zurück, d. h. zur Auswahl der optimalen Gruppe von Einzelinstanzen von Handelsstrategien, und ergänzen sie durch die Möglichkeit, die Ergebnisse der Instanzen in dem Vorwärtszeitraum zu berücksichtigen.

Neuronale Netze im Handel: Szenenspezifische Objekterkennung (HyperDet3D)
Wir laden Sie ein, einen neuen Ansatz zur Erkennung von Objekten mit Hilfe von Hypernetzwerken kennen zu lernen. Ein Hypernetwork generiert Gewichte für das Hauptmodell, wodurch die Besonderheiten der aktuellen Marktsituation berücksichtigt werden können. Dieser Ansatz ermöglicht es uns, die Vorhersagegenauigkeit zu verbessern, indem wir das Modell an unterschiedliche Handelsbedingungen anpassen.

Neuronale Netze im Handel: Transformer für die Punktwolke (Pointformer)
In diesem Artikel geht es um Algorithmen für die Verwendung von Aufmerksamkeitsmethoden zur Lösung von Problemen bei der Erkennung von Objekten in einer Punktwolke. Die Erkennung von Objekten in Punktwolken ist für viele reale Anwendungen wichtig.

Neuronale Netze im Handel: Hierarchisches Lernen der Merkmale von Punktwolken
Wir untersuchen weiterhin Algorithmen zur Extraktion von Merkmalen aus einer Punktwolke. In diesem Artikel werden wir uns mit den Mechanismen zur Steigerung der Effizienz der PointNet-Methode vertraut machen.

Neuronale Netze im Handel: Punktwolkenanalyse (PointNet)
Die direkte Analyse von Punktwolken vermeidet unnötiges Datenwachstum und verbessert die Leistung von Modellen bei Klassifizierungs- und Segmentierungsaufgaben. Solche Ansätze zeigen eine hohe Leistungsfähigkeit und Robustheit gegenüber Störungen in den Originaldaten.

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 17): Weitere Vorbereitung auf den realen Handel
Derzeit verwendet unser EA die Datenbank, um Initialisierungs-Strings für einzelne Instanzen von Handelsstrategien zu erhalten. Die Datenbank ist jedoch recht groß und enthält viele Informationen, die für den eigentlichen EA-Betrieb nicht benötigt werden. Versuchen wir, die Funktionalität des EA ohne eine obligatorische Verbindung zur Datenbank zu gewährleisten.

Implementierung eines Schnellfeuer-Handelsstrategie-Algorithmus mit parabolischem SAR und einfachem gleitenden Durchschnitt (SMA) in MQL5
In diesem Artikel entwickeln wir einen Rapid-Fire Trading Expert Advisor in MQL5, der die Indikatoren Parabolic SAR und Simple Moving Average (SMA) nutzt, um eine reaktionsfähige Handelsstrategie zu erstellen. Wir gehen detailliert auf die Umsetzung der Strategie ein, einschließlich der Verwendung von Indikatoren, der Signalerzeugung sowie des Test- und Optimierungsprozesses.

Neuronale Netze im Handel: Hierarchische Vektortransformer (HiVT)
Wir laden Sie ein, die Methode Hierarchical Vector Transformer (HiVT) kennenzulernen, die für die schnelle und genaue Vorhersage von multimodalen Zeitreihen entwickelt wurde.

Neuronale Netze im Handel: Hierarchische Vektortransformer (Letzter Teil)
Wir fahren fort mit der Untersuchung der Methode der hierarchischen Vektortransformation. In diesem Artikel werden wir die Konstruktion des Modells abschließen. Wir werden es auch anhand echter historischer Daten trainieren und testen.

Neuronale Netze im Handel: Vereinheitlichtes Trajektoriengenerierungsmodell (UniTraj)
Das Verständnis des Agentenverhaltens ist in vielen verschiedenen Bereichen wichtig, aber die meisten Methoden konzentrieren sich nur auf eine der Aufgaben (Verstehen, Rauschunterdrückung oder Vorhersage), was ihre Effektivität in realen Szenarien verringert. In diesem Artikel werden wir uns mit einem Modell vertraut machen, das sich an die Lösung verschiedener Probleme anpassen lässt.

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 6): Der Mean Reversion Signal Reaper
Während einige Konzepte auf den ersten Blick einfach erscheinen, kann ihre Umsetzung in der Praxis eine ziemliche Herausforderung darstellen. Im folgenden Artikel nehmen wir Sie mit auf eine Reise durch unseren innovativen Ansatz zur Automatisierung eines Expert Advisor (EA), der den Markt mithilfe einer Mean-Reversion-Strategie fachkundig analysiert. Seien Sie dabei, wenn wir die Feinheiten dieses spannenden Automatisierungsprozesses entschlüsseln.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 52): Accelerator Oszillator
Der Accelerator Oszillator ist ein weiterer Indikator von Bill Williams, der die Beschleunigung der Preisdynamik und nicht nur ihr Tempo verfolgt. Ähnlich wie der Awesome Oszillator, den wir in einem kürzlich erschienenen Artikel besprochen haben, versucht er, die Verzögerungseffekte zu vermeiden, indem er sich mehr auf die Beschleunigung als auf die Geschwindigkeit konzentriert. Wir untersuchen wie immer, welche Muster wir daraus ableiten können und welche Bedeutung sie für den Handel mit einem von einem Assistenten zusammengestellten Expert Advisor haben könnten.

Automatisieren von Handelsstrategien in MQL5 (Teil 3): Das Zone Recovery RSI System für ein dynamisches Handelsmanagement
In diesem Artikel erstellen wir ein Zone Recovery RSI EA System in MQL5, das RSI-Signale verwendet, um Handelsgeschäfte auszulösen und eine Recovery-Strategie, um auf Verluste zu reagieren. Wir implementieren die Klasse „ZoneRecovery“ zur Automatisierung von Handelseinträgen, Erholungslogik und Positionsmanagement. Der Artikel schließt mit Erkenntnissen zu den Backtests, um die Leistung zu optimieren und die Effektivität des EA zu erhöhen.

Wie man ein volumenbasiertes Handelssystem aufbaut und optimiert (Chaikin Money Flow - CMF)
In diesem Artikel werden wir einen volumenbasierten Indikator, den Chaikin Money Flow (CMF), vorstellen, nachdem wir erläutert haben, wie er konstruiert, berechnet und verwendet werden kann. Wir werden verstehen, wie man einen nutzerdefinierten Indikator erstellt. Wir werden einige einfache Strategien vorstellen, die verwendet werden können, und sie dann testen, um zu verstehen, welche davon besser ist.

Einführung in MQL5 (Teil 10): Eine Anleitung für Anfänger zur Arbeit mit den integrierten Indikatoren in MQL5
Dieser Artikel führt in die Arbeit mit integrierten Indikatoren in MQL5 ein und konzentriert sich auf die Erstellung eines RSI-basierten Expert Advisors (EA) mit einem projektbasierten Ansatz. Sie werden lernen, RSI-Werte abzurufen und zu nutzen, Liquiditätsdurchbrüche zu handhaben und die Handelsvisualisierung mit Chart-Objekten zu verbessern. Darüber hinaus wird in dem Artikel ein wirksames Risikomanagement hervorgehoben, einschließlich der Festlegung eines prozentualen Risikos, der Umsetzung von Risiko-Ertrags-Verhältnissen und der Anwendung von Risikomodifikationen zur Sicherung von Gewinnen.

Integrieren Sie Ihr eigenes LLM in EA (Teil 5): Handelsstrategie mit LLMs entwickeln und testen (III) – Adapter-Tuning
Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.

Automatisieren von Handelsstrategien in MQL5 (Teil 2): Das Breakout System Kumo mit Ichimoku und dem Awesome Oscillator
In diesem Artikel erstellen wir einen Expert Advisor (EA), der die Kumo Breakout-Strategie unter Verwendung des Indikators Ichimoku Kinko Hyo und des Awesome Oscillators automatisiert. Wir gehen durch den Prozess der Initialisierung von Indikator-Handles, der Erkennung von Ausbruchsbedingungen und der Codierung von automatischen Handelsein- und -ausgängen. Zusätzlich implementieren wir Trailing-Stops und die Positionsmanagement-Logik, um die Leistung des EA und seine Anpassungsfähigkeit an die Marktbedingungen zu verbessern.

Beherrschen von Dateioperationen in MQL5: Von Basic I/O bis zum Erstellen eines nutzerdefinierten CSV-Readers
Dieser Artikel konzentriert sich auf wesentliche MQL5-Dateiverarbeitungstechniken, die Handelsprotokolle, CSV-Verarbeitung und externe Datenintegration umfassen. Es bietet sowohl ein konzeptionelles Verständnis als auch praktische Anleitungen zur Programmierung. Der Leser lernt Schritt für Schritt, wie man eine nutzerdefinierte CSV-Importer-Klasse erstellt und erwirbt so praktische Fähigkeiten für reale Anwendungen.

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 4): Der Analytik Forecaster EA
Wir gehen über die einfache Darstellung von analysierten Metriken in Charts hinaus und bieten eine breitere Perspektive, die auch die Integration von Telegram umfasst. Mit dieser Erweiterung können wichtige Ergebnisse über die Telegram-App direkt auf Ihr mobiles Gerät geliefert werden. Begleiten Sie uns in diesem Artikel auf dieser gemeinsamen Reise.

Handel mit dem MQL5 Wirtschaftskalender (Teil 5): Verbessern des Dashboards mit reaktionsschnellen Steuerelementen und Filterschaltflächen
In diesem Artikel erstellen wir Schaltflächen für die Filter von Währungspaar, Wichtigkeitsstufen, Zeitspannen und eine Abbruchoption, um die Kontrolle über das Dashboard zu verbessern. Diese Tasten sind so programmiert, dass sie dynamisch auf Nutzeraktionen reagieren und eine nahtlose Interaktion ermöglichen. Außerdem automatisieren wir ihr Verhalten, um Änderungen in Echtzeit auf dem Dashboard anzuzeigen. Dies verbessert die allgemeine Funktionsweise, Mobilität und Reaktionsfähigkeit des Panels.

Nutzung des CatBoost Machine Learning Modells als Filter für Trendfolgestrategien
CatBoost ist ein leistungsfähiges, baumbasiertes, maschinelles Lernmodell, das auf die Entscheidungsfindung auf der Grundlage stationärer Merkmale spezialisiert ist. Andere baumbasierte Modelle wie XGBoost und Random Forest haben ähnliche Eigenschaften in Bezug auf ihre Robustheit, ihre Fähigkeit, komplexe Muster zu verarbeiten, und ihre Interpretierbarkeit. Diese Modelle haben ein breites Anwendungsspektrum, das von der Merkmalsanalyse bis zum Risikomanagement reicht. In diesem Artikel werden wir das Verfahren zur Verwendung eines trainierten CatBoost-Modells als Filter für eine klassische Trendfolgestrategie mit gleitendem Durchschnitt erläutern. Dieser Artikel soll einen Einblick in den Strategieentwicklungsprozess geben und gleichzeitig auf die Herausforderungen eingehen, denen man sich auf diesem Weg stellen kann. Ich werde meinen Arbeitsablauf vorstellen, bei dem ich Daten von MetaTrader 5 abrufe, ein maschinelles Lernmodell in Python trainiere und zurück in MetaTrader 5 Expert Advisors integriere. Am Ende dieses Artikels werden wir die Strategie durch statistische Tests validieren und zukünftige Bestrebungen erörtern, die über den derzeitigen Ansatz hinausgehen.

Handel mit dem MQL5 Wirtschaftskalender (Teil 4): Implementierung von Echtzeit-Nachrichtenaktualisierungen im Dashboard
Dieser Artikel erweitert unser Wirtschaftskalender-Dashboard durch die Implementierung von Echtzeit-Nachrichten-Updates, um Marktinformationen aktuell und umsetzbar zu halten. Wir integrieren Techniken zum Abrufen von Live-Daten in MQL5, um Ereignisse auf dem Dashboard kontinuierlich zu aktualisieren und die Reaktionsfähigkeit der Schnittstelle zu verbessern. Dieses Update stellt sicher, dass wir direkt über das Dashboard auf die neuesten Wirtschaftsnachrichten zugreifen können, um unsere Handelsentscheidungen auf der Grundlage der aktuellsten Daten zu optimieren.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 50): Der Awesome Oszillator
Der Awesome Oscillator ist ein weiterer Bill-Williams-Indikator, der zur Messung des Momentums verwendet wird. Es kann mehrere Signale generieren, und deshalb überprüfen wir diese auf der Basis von Mustern, wie in früheren Artikeln, indem wir die MQL5-Assistenten-Klassen und -Assembly nutzen.

Automatisieren von Handelsstrategien in MQL5 (Teil 1): Das Profitunity System (Trading Chaos von Bill Williams)
In diesem Artikel untersuchen wir das Profitunity System von Bill Williams, indem wir seine Kernkomponenten und seinen einzigartigen Ansatz für den Handel im Marktchaos aufschlüsseln. Wir führen die Leser durch die Implementierung des Systems in MQL5 und konzentrieren uns dabei auf die Automatisierung von Schlüsselindikatoren und Einstiegs-/Ausstiegssignalen. Schließlich testen und optimieren wir die Strategie und geben Einblicke in ihre Leistung in verschiedenen Marktszenarien.

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 49): Verstärkungslernen mit Optimierung der proximalen Politik
Die „Proximal Policy Optimization“ ist ein weiterer Algorithmus des Reinforcement Learning, der die „Policy“, oft in Form eines Netzwerks, in sehr kleinen inkrementellen Schritten aktualisiert, um die Stabilität des Modells zu gewährleisten. Wir untersuchen, wie dies in einem von einem Assistenten zusammengestellten Expert Advisor von Nutzen sein könnte, wie wir es in früheren Artikeln getan haben.