
Торгуем опционы без опционов (Часть 1): Основы теории и эмуляция через базовые активы
Статья описывает вариант эмуляции опционов через базовый актив, реализованный на языке программирования MQL5. Сравниваются преимущества и недостатки выбранного подхода с реальными биржевыми опционами на примере срочного рынка ФОРТС московской биржи MOEX и криптобиржи Bybit.

Создание советника на MQL5 на основе стратегии Прорыва дневного диапазона (Daily Range Breakout)
В настоящей статье мы создаём советника на MQL5 на основе стратегии Прорыва дневного диапазона (Daily Range Breakout). Мы рассмотрим ключевые концепции стратегии, разработаем схему советника и реализуем логику прорыва на MQL5. В конце мы изучаем методы бэк-тестирования и оптимизации советника, чтобы максимально повысить его эффективность.

Индикатор CAPM модели на рынке Forex
Адаптация классической модели CAPM для валютного рынка Forex в MQL5. Индикатор рассчитывает ожидаемую доходность и премию за риск на основе исторической волатильности. Показатели возрастают на пиках и впадинах, отражая фундаментальные принципы ценообразования. Практическое применение для контртрендовых и трендовых стратегий с учетом динамики соотношения риска и доходности в реальном времени. Включает математический аппарат и техническую реализацию.

Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Окончание)
Фреймворк Mantis превращает сложные временные ряды в информативные токены и служит надёжным фундаментом для интеллектуального торгового Агента, готового работать в реальном времени.

Переосмысливаем классические стратегии (Часть X): Может ли ИИ управлять MACD?
Присоединяйтесь к нам, поскольку мы провели эмпирический анализ индикатора MACD, чтобы проверить, поможет ли применение искусственного интеллекта к стратегии, включая индикатор, повысить точность прогнозирования пары EURUSD. Мы одновременно оценивали, легче ли прогнозировать сам индикатор, чем цену, а также позволяет ли значение индикатора прогнозировать будущие уровни цен. Мы предоставим вам информацию, необходимую для принятия решения о том, стоит ли вам инвестировать свое время в интеграцию MACD в ваши торговые стратегии с использованием искусственного интеллекта.

Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Построение объектов)
Mantis — универсальный инструмент для глубокого анализа временных рядов, гибко масштабируемый под любые финансовые сценарии. Узнайте, как сочетание патчинга, локальных свёрток и кросс-внимания позволяет получить высокоточную интерпретацию рыночных паттернов.

Индикатор прогнозирования ARIMA на MQL5
В данной статье мы создаем индикатор прогнозирования ARIMA на MQL5. Рассматривается, как модель ARIMA формирует прогнозы, её применимость к рынку Форекс и фондовому рынку в целом. Также объясняется, что такое авторегрессия AR, каким образом авторегрессионные модели используются для прогнозирования, и как работает механизм авторегрессии.

Создание торговой панели администратора на MQL5 (Часть V): Двухфакторная аутентификация (2FA)
В статье рассмотрено повышение безопасности панели торгового администратора, которая в настоящее время находится в разработке. Мы рассмотрим, как внедрить MQL5 в новую стратегию безопасности, интегрировав API Telegram для двухфакторной аутентификации (2FA). Статья предоставит ценную информацию о применении MQL5 для усиления мер безопасности. Кроме того, мы рассмотрим функцию MathRand, сосредоточившись на ее функциональности и на том, как ее можно эффективно использовать в нашей системе безопасности.

Нейросети в трейдинге: Эффективное извлечение признаков для точной классификации (Mantis)
Познакомьтесь с Mantis — лёгкой фундаментальной моделью для классификации временных рядов на базе Transformer с контрастным предварительным обучением и гибридным вниманием, обеспечивающими рекордную точность и масштабируемость.

Создаем интерактивную MQL5-панель с использованием класса Controls (Часть 2): Добавление отзывчивости кнопок
В этой статье мы преобразуем нашу статическую панель мониторинга MQL5 в интерактивный инструмент, добавив отзывчивость кнопок. Мы рассмотрим, как автоматизировать функционал компонентов графического интерфейса, гарантируя, что они будут правильно реагировать на нажатия пользователя. К концу статьи мы создадим динамический интерфейс, который повышает вовлеченность пользователей и удобство торговли.

Упрощаем торговлю на новостях (Часть 4): Повышаем производительность
В этой статье будут рассмотрены методы улучшения работы советника в тестере стратегий, будет написан код для разделения времени новостных событий на почасовые категории. Доступ к этим новостным событиям будет осуществляться в течение указанного для них часа. Это гарантирует, что советник может эффективно управлять сделками на основе событий как в условиях высокой, так и низкой волатильности.

Создание советника на MQL5 на основе стратегии PIRANHA с использованием Полос Боллинджера
В настоящей статье мы создаем советника (EA) на MQL5 на основе стратегии PIRANHA, использующего Полосы Боллинджера для повышения эффективности торговли. Мы обсуждаем ключевые принципы стратегии, реализацию кода, а также методы тестирования и оптимизации. Эти знания позволят эффективно использовать советник в ваших торговых сценариях

Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Окончание)
Эта статья позволит вам увидеть, как Mamba4Cast превращает теорию в рабочий торговый алгоритм и подготовить почву для собственных экспериментов. Не упустите возможность получить полный спектр знаний и вдохновения для развития собственной стратегии.

Создание торговой панели администратора на MQL5 (Часть IV): Безопасность входа в систему
Представьте себе, что злоумышленник проник в систему управления торговли и получил доступ к компьютерам и панели администратора, используемым для передачи ценных сведений миллионам трейдеров по всему миру. Это может привести к катастрофическим последствиям, таким как несанкционированная отправка вводящих в заблуждение сообщений или случайные нажатия на кнопки, запускающие непреднамеренные действия. В этой статье мы рассмотрим меры безопасности в MQL5 и новые функции безопасности, которые мы реализовали в нашей панели администратора для защиты от этих угроз. Совершенствуя наши протоколы безопасности, мы стремимся защитить наши каналы связи и сохранить доверие членов нашего торгового сообщества.

Торговый инструментарий MQL5 (Часть 3): Разработка EX5-библиотеки для управления отложенными ордерами
Вы узнаете, как разработать и внедрить комплексную библиотеку отложенных EX5-ордеров в ваш код или MQL5-проекты. Мы рассмотрим, как импортировать и реализовать такую библиотеку в составе торговой панели или графического пользовательского интерфейса (GUI). Панель ордеров советника позволит пользователям открывать, отслеживать и удалять отложенные ордера по магическому числу непосредственно из графического интерфейса в окне графика.

Самообучающийся советник с нейросетью на матрице состояний
Самообучающийся советник с нейросетью на матрице состояний. Совмещаем марковские цепи с многослойной нейросетью MLP, написанной на библиотеке ALGLIB MQL5. Как могут быть совмещены для прогнозирования Форекс марковские цепи и нейросети?

Матричная модель прогнозирования на марковской цепи
Создаем матричную модель прогнозирования на марковской цепи. Что такое марковские цепи, и как можно использовать марковскую цепь для трейдинга на Форекс.

Создаем интерактивную MQL5-панель с использованием класса Controls (Часть 1): Настройка панели
В этой статье мы создадим интерактивную торговую панель с использованием класса Controls в MQL5, предназначенную для оптимизации торговых операций. Панель содержит заголовок, кнопки навигации для торговли, закрытия и информации, а также специализированные кнопки для заключения сделок и управления позициями. К концу статьи у нас будет базовая панель, готовая к дальнейшим улучшениям.

Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Базовые модули модели)
Продолжаем знакомство с фреймворком Mamba4Cast. И сегодня мы погрузимся в практическую реализацию предложенных подходов. Mamba4Cast создавался не для долгого прогрева на каждом новом временном ряде, а для мгновенного включения в работу. Благодаря идее Zero‑Shot Forecasting модель способна сразу выдавать качественные прогнозы на реальных данных без дообучения и тонкой настройки гиперпараметров.

От новичка до эксперта: Совместная отладка на MQL5
Политика «решения проблем» может создать четкую программу для овладения сложными навыками, такими как программирование на MQL5. Такой подход позволяет сконцентрироваться на решении проблем, одновременно развивая свои навыки. Чем больше проблем вы решаете, тем более продвинутый опыт передается в ваш мозг. Лично я считаю, что отладка - это самый эффективный способ освоить программирование. Сегодня мы рассмотрим процесс очистки кода и обсудим лучшие методы преобразования запутанной программы в ясную и функциональную. Прочтите эту статью и откройте для себя ценную информацию.

Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Mamba4Cast)
В этой статье мы знакомимся с фреймворком Mamba4Cast и подробно рассматриваем один из его ключевых компонентов — позиционное кодирование на основе временных меток. Показано, как формируется временной эмбеддинг с учётом календарной структуры данных.

Как создать торговый журнал с помощью MetaTrader и Google Sheets
Создайте торговый журнал с помощью MetaTrader и Google Sheets! Вы узнаете, как синхронизировать свои торговые данные с помощью HTTP POST и извлекать их с помощью HTTP-запросов. Наконец, у вас будет торговый журнал, который поможет эффективно отслеживать ваши сделки.

Создание торговой панели администратора на MQL5 (Часть III): Расширение встроенных классов для управления темами (II)
Мы расширим существующую библиотеку Dialog, включив в нее логику управления темами. Кроме того, мы интегрируем методы переключения тем в классы CDialog, CEdit и CButton, используемые в нашем проекте панели администратора.

Применение Conditional LSTM и индикатора VAM в автоматической торговле
В настоящей статье рассматривается разработка советника (EA) для автоматической торговли, сочетающего в себе технический анализ с прогнозами с помощью глубокого обучения.

Нейросети в трейдинге: Прогнозирование временных рядов при помощи адаптивного модального разложения (Окончание)
В статье рассматривается адаптация и практическая реализация фреймворка ACEFormer средствами MQL5 в контексте алгоритмической торговли. Показаны ключевые архитектурные решения, особенности обучения и результаты тестирования модели на реальных данных.

Арбитражный трейдинг Forex: Матричная торговая система на возврат к справедливой стоимости с ограничением риска
Статья содержит детальное описание алгоритма расчета кросс-курсов, визуализацию матрицы дисбалансов и рекомендации по оптимальной настройке параметров MinDiscrepancy и MaxRisk для эффективной торговли. Система автоматически рассчитывает "справедливую стоимость" каждой валютной пары через кросс-курсы, генерируя сигналы на покупку при отрицательных отклонениях, и на продажу — при положительных.

Нейросети в трейдинге: Прогнозирование временных рядов при помощи адаптивного модального разложения (ACEFormer)
Предлагаем познакомиться с архитектурой ACEFormer — современным решением, сочетающим эффективность вероятностного внимания и адаптивное разложение временных рядов. Материал будет полезен тем, кто ищет баланс между вычислительной производительностью и точностью прогноза на финансовых рынках.

MQL5-советник, интегрированный в Telegram (Часть 7): Анализ команд для автоматизации индикаторов на графиках
В этой статье мы узнаем, как интегрировать команды Telegram с MQL5 для автоматизации добавления индикаторов на торговые графики. Мы рассмотрим процесс анализа пользовательских команд, их выполнение на языке MQL5 и тестирование системы для обеспечения бесперебойной торговли на основе индикаторов.

Скальпинг по потоку ордеров (Order Flow Scalping) с MQL5
Данный советник для MetaTrader 5 реализует стратегию Scalping OrderFlow (стратегия скальпирования потока ордеров) с расширенным управлением рисками. В нем используется множество технических индикаторов для определения торговых возможностей на основе дисбалансов в потоке ордеров. Бэк-тестирование показывает потенциальную прибыльность, но подчеркивает необходимость дальнейшей оптимизации, особенно в области управления рисками и соотношения результатов торговли. Он подходит для опытных трейдеров и требует тщательного тестирования и понимания перед практическим применением.

Прогнозируем Ренко — бары при помощи ИИ CatBoost
Как использовать Ренко-бары вместе с ИИ? Рассмотрим Ренко-трейдинг на Форекс с точностью прогнозов до 59.27%. Исследуем преимущества Ренко-баров для фильтрации рыночного шума, узнаем, почему объемные показатели важнее ценовых паттернов, и как настроить оптимальный размер блока Ренко для EURUSD. Пошаговое руководство по интеграции CatBoost, Python и MetaTrader 5 для создания собственной системы прогнозирования Ренко Форекс. Идеально для трейдеров, стремящихся выйти за рамки традиционного технического анализа.

Нейросети в трейдинге: Оптимизация LSTM для целей прогнозирования многомерных временных рядов (Окончание)
Мы продолжаем реализацию фреймворка DA-CG-LSTM, который предлагает инновационные методы анализа и прогнозирования временных рядов. Использование CG-LSTM и двойного внимания позволяет более точно выявлять как долгосрочные, так и краткосрочные зависимости в данных, что особенно полезно для работы с финансовыми рынками.

Создание самооптимизирующихся советников на языках MQL5 и Python (Часть II): Настройка глубоких нейронных сетей
Модели машинного обучения имеют различные настраиваемые параметры. В этой серии статей мы рассмотрим, как настроить ИИ-модели в соответствии с конкретным рынком с помощью библиотеки SciPy.

Реализация торговой стратегии на основе полос Боллинджера с помощью MQL5: Пошаговое руководство
Пошаговое руководство по реализации на MQL5 алгоритма автоматической торговли, основанной на торговой стратегии «Полосы Боллинджера». Подробное учебное пособие на основе создания советника, который может быть полезен трейдерам.

Нейросети в трейдинге: Оптимизация LSTM для целей прогнозирования многомерных временных рядов (DA-CG-LSTM)
Статья знакомит с алгоритмом DA-CG-LSTM, который предлагает новые подходы к анализу временных рядов и их прогнозированию. Из нее вы узнаете, как инновационные механизмы внимания и гибкость модели позволяют улучшить точность прогнозов.

Парный трейдинг: Алготорговля с автооптимизацией на разнице Z-оценки
В этой статье разберем, что такое парный трейдинг и как происходит торговля на корреляциях. Также создадим советник для автоматизации парного трейдинга и добавим возможность автоматической оптимизации такого торгового алгоритма на исторических данных. Кроме того, в рамках проекта узнаем, как рассчитывать расхождения двух пар с помощью z-оценки.

Совместное использование PSAR, Хейкин-Аши и глубокого обучения для трейдинга
В настоящем проекте исследуется сочетание глубокого обучения и технического анализа для тестирования торговых стратегий на рынке Форекс. Для быстрого экспериментирования используется скрипт на Python, использующий модель ONNX наряду с традиционными индикаторами, такими как PSAR, SMA и RSI, для прогнозирования движения пары EUR/USD. Затем скрипт MetaTrader 5 переносит эту стратегию в реальную среду, используя исторические данные и технический анализ для принятия обоснованных торговых решений. Результаты тестирования на исторических данных свидетельствуют об осторожном, но последовательном подходе, направленном на управление рисками и устойчивый рост, а не на агрессивную погоню за прибылью.

Анализ настроений в Twitter с помощью сокетов
Этот инновационный торговый бот интегрирует платформу MetaTrader 5 с языком Python в целях использования анализа настроений в социальных сетях в режиме реального времени для автоматизированного принятия торговых решений. Путем анализа настроений в Twitter, связанных с конкретными финансовыми инструментами, бот преобразует тенденции социальных сетей в действенные торговые сигналы. Он использует архитектуру «клиент-сервер» с сокетной связью, обеспечивая бесперебойное взаимодействие между торговыми возможностями MetaTrader 5 и вычислительной мощностью Python. Система демонстрирует потенциал объединения финансовой математики с обработкой текстов на естественном языке, предлагая передовой подход к алгоритмической торговле, использующей альтернативные источники данных. Бот не только демонстрирует серьезные перспективы, но и указывает на области для дальнейшего совершенствования, включая более продвинутые методы анализа настроений и улучшенные стратегии управления рисками.

Критерии тренда. Окончание
В этой статье мы рассмотрим особенности применения некоторых критериев тренда на практике. А также сделаем попытку разработать несколько новых критериев. Основное внимание будет уделено эффективности применения этих критериев для анализа рыночных данных и трейдинга.

Нейросети в трейдинге: Актер—Режиссёр—Критик (Окончание)
Фреймворк Actor–Director–Critic — это эволюция классической архитектуры агентного обучения. В статье представлен практический опыт его реализации и адаптации к условиям финансовых рынков.

Создание торговой панели администратора на MQL5 (Часть III): Улучшение графического интерфейса пользователя (GUI) с помощью визуального оформления (I)
В настоящей статье мы сосредоточимся на визуальном оформлении графического интерфейса пользователя (GUI) нашей торговой панели администратора с использованием MQL5. Мы рассмотрим различные методы и функции, доступные в MQL5, которые позволяют настраивать и оптимизировать интерфейс, обеспечивая его соответствие потребностям трейдеров при сохранении привлекательной эстетики.