Artículos sobre programación en el lenguaje MQL5

icon

Aprenda el lenguaje de programación de estrategias comerciales MQL5 leyendo numerosos artículos la mayor parte de los cuales han sido escritos por Ustedes - miembros de MQL5.community. Con el fin de buscar rápidamente la respuesta sobre una u otra cuestión de programación, todos los artículos están divididos en categorías: "Integración", "Probador", "Estrategias comerciales", etc.

Siga las nuevas publicaciones y participe en sus discusiones en el foro de MQL5.community!

Nuevo artículo
últimas | mejores
preview
Algoritmo de búsqueda orbital atómica - Atomic Orbital Search (AOS)

Algoritmo de búsqueda orbital atómica - Atomic Orbital Search (AOS)

Este artículo analiza el algoritmo AOS (Atomic Orbital Search), que usa conceptos de modelos orbitales atómicos para modelar la búsqueda de soluciones. El algoritmo se basa en distribuciones de probabilidad y en la dinámica de las interacciones en el átomo. El artículo analiza con detalle los aspectos matemáticos del AOS, incluida la actualización de las posiciones de las soluciones candidatas y los mecanismos de absorción y liberación de energía. El AOS descubre nuevos horizontes para la aplicación de los principios cuánticos a los problemas computacionales al ofrecer un enfoque innovador de la optimización.
preview
Reimaginando las estrategias clásicas en MQL5 (Parte IX): Análisis de múltiples marcos temporales (II)

Reimaginando las estrategias clásicas en MQL5 (Parte IX): Análisis de múltiples marcos temporales (II)

En la discusión de hoy, examinamos la estrategia de análisis de múltiples marcos temporales para aprender en qué marco temporal nuestro modelo de IA funciona mejor. Nuestro análisis nos lleva a concluir que los marcos temporales mensuales y horarios producen modelos con tasas de error relativamente bajas en el par EURUSD. Utilizamos esto para nuestro beneficio y creamos un algoritmo comercial que hace predicciones de IA en el marco de tiempo mensual y ejecuta sus operaciones en el marco de tiempo horario.
preview
Redes neuronales en el trading: Modelo hiperbólico de difusión latente (Final)

Redes neuronales en el trading: Modelo hiperbólico de difusión latente (Final)

El uso de procesos de difusión anisotrópica para codificar los datos de origen en un espacio latente hiperbólico, como se propone en el framework HypDIff, ayuda a preservar las características topológicas de la situación actual del mercado y mejora la calidad de su análisis. En el artículo anterior, empezamos a aplicar los enfoques propuestos usando herramientas MQL5. Hoy continuaremos el trabajo iniciado, llevándolo a su conclusión lógica.
preview
Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte V): Modelos profundos de Markov

Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte V): Modelos profundos de Markov

En esta discusión, aplicaremos una cadena de Markov simple en un indicador RSI, para observar cómo se comporta el precio después de que el indicador pasa por niveles clave. Concluimos que las señales de compra y venta más fuertes en el par NZDJPY se generan cuando el RSI está en el rango 11-20 y 71-80, respectivamente. Demostraremos cómo puedes manipular tus datos para crear estrategias comerciales óptimas que se aprenden directamente de los datos que tienes. Además, demostraremos cómo entrenar una red neuronal profunda para aprender a utilizar la matriz de transición de manera óptima.
preview
Redes neuronales en el trading: Modelo hiperbólico de difusión latente (HypDiff)

Redes neuronales en el trading: Modelo hiperbólico de difusión latente (HypDiff)

El artículo estudiará formas de codificar los datos de origen en un espacio latente hiperbólico mediante procesos de difusión anisotrópica. Esto ayudará a preservar con mayor precisión las características topológicas de la situación actual del mercado y mejorará la calidad de su análisis.
preview
De novato a experto: depuración colaborativa en MQL5

De novato a experto: depuración colaborativa en MQL5

La resolución de problemas puede establecer una rutina concisa para dominar habilidades complejas, como la programación en MQL5. Este enfoque le permite concentrarse en la resolución de problemas al tiempo que desarrolla sus capacidades. Cuantos más problemas abordes, más conocimientos avanzados se transferirán a tu cerebro. Personalmente, creo que la depuración es la forma más efectiva de dominar la programación. Hoy repasaremos el proceso de limpieza de código y analizaremos las mejores técnicas para transformar un programa desordenado en uno limpio y funcional. Lea este artículo y descubra información valiosa.
preview
Entrenamos un perceptrón multicapa usando el algoritmo de Levenberg-Marquardt

Entrenamos un perceptrón multicapa usando el algoritmo de Levenberg-Marquardt

Este artículo le presentaremos una implementación del algoritmo Levenberg-Marquardt para el entrenamiento de redes neuronales de propagación directa. Asimismo, realizaremos un análisis comparativo del rendimiento usando algoritmos de la biblioteca scikit-learn Python. También discutiremos preliminarmente los métodos de aprendizaje más sencillos como el descenso de gradiente, el descenso de gradiente con impulso y el descenso de gradiente estocástico.
preview
Análisis del impacto del clima en las divisas de los países agrícolas usando Python

Análisis del impacto del clima en las divisas de los países agrícolas usando Python

¿Cómo se relacionan el clima y el mercado de divisas? La teoría económica clásica no ha reconocido durante mucho tiempo la influencia de estos factores en el comportamiento del mercado. Pero ahora las cosas han cambiado. Hoy intentaremos encontrar conexiones entre el estado del tiempo y la posición de las divisas agrarias en el mercado.
preview
Cómo crear un diario de operaciones con MetaTrader y Google Sheets

Cómo crear un diario de operaciones con MetaTrader y Google Sheets

Crear un diario de operaciones con MetaTrader y Google Sheets! Aprenderá cómo sincronizar sus datos comerciales a través de HTTP POST y recuperarlos mediante solicitudes HTTP. Al final, tendrás un diario de operaciones que te ayudará a realizar un seguimiento de tus operaciones de manera eficaz y eficiente.
preview
Redes neuronales en el trading: Modelos de difusión direccional (DDM)

Redes neuronales en el trading: Modelos de difusión direccional (DDM)

Hoy proponemos al lector familiarizarse con los modelos de difusión direccional que explotan el ruido anisotrópico y direccional dependiente de los datos durante la difusión directa para capturar representaciones gráficas significativas.
preview
Características del Wizard MQL5 que debe conocer (Parte 41): Aprendizaje por refuerzo con redes neuronales (Deep-Q-Networks, DQN)

Características del Wizard MQL5 que debe conocer (Parte 41): Aprendizaje por refuerzo con redes neuronales (Deep-Q-Networks, DQN)

Deep-Q-Network es un algoritmo de aprendizaje de refuerzo que involucra redes neuronales para proyectar el próximo valor Q y la acción ideal durante el proceso de entrenamiento de un módulo de aprendizaje automático. Ya hemos considerado un algoritmo de aprendizaje de refuerzo alternativo, Q-Learning. Por lo tanto, este artículo presenta otro ejemplo de cómo un MLP entrenado con aprendizaje de refuerzo se puede utilizar dentro de una clase de señal personalizada.
preview
Capacidades de SQLite en MQL5: Ejemplo de panel interactivo con estadísticas comerciales por símbolos y números mágicos

Capacidades de SQLite en MQL5: Ejemplo de panel interactivo con estadísticas comerciales por símbolos y números mágicos

En este artículo, analizaremos la creación de un indicador que mostrará en un panel interactivo las estadísticas comerciales según la cuenta, y también según los símbolos y estrategias comerciales. Asimismo, escribiremos un código basándonos en los ejemplos de la Documentación y el artículo sobre el trabajo con bases de datos.
preview
Aprendizaje automático y Data Science (Parte 30): La pareja ideal para predecir el mercado bursátil: redes neuronales convolucionales (CNN) y recurrentes (RNN)

Aprendizaje automático y Data Science (Parte 30): La pareja ideal para predecir el mercado bursátil: redes neuronales convolucionales (CNN) y recurrentes (RNN)

En este artículo exploramos la integración dinámica de redes neuronales convolucionales (CNN) y redes neuronales recurrentes (RNN) en la predicción bursátil. Aprovechando la capacidad de las CNN para extraer patrones y la destreza de las RNN para manejar datos secuenciales. Veamos cómo esta potente combinación puede mejorar la precisión y la eficacia de los algoritmos de negociación.
preview
Métodos de optimización de la biblioteca ALGLIB (Parte II)

Métodos de optimización de la biblioteca ALGLIB (Parte II)

En este artículo seguiremos analizando los métodos restantes de optimización de la biblioteca ALGLIB, prestando especial atención a su comprobación con funciones multivariantes complejas. Esto nos permitirá no solo evaluar el rendimiento de cada algoritmo, sino también identificar sus puntos fuertes y débiles en diferentes condiciones.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 7): Análisis de comandos para la automatización de indicadores en los gráficos

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 7): Análisis de comandos para la automatización de indicadores en los gráficos

En este artículo, exploramos cómo integrar los comandos en Telegram con MQL5 para automatizar la adición de indicadores en los gráficos de trading. Cubrimos el proceso de análisis sintáctico de los comandos del usuario, ejecutándolos en MQL5, y probando el sistema para asegurar un comercio basado en indicadores sin problemas.
preview
Redes neuronales en el trading: Representación adaptativa de grafos (NAFS)

Redes neuronales en el trading: Representación adaptativa de grafos (NAFS)

Hoy le proponemos familiarizarse con el método Node-Adaptive Feature Smoothing (NAFS), que supone un enfoque no paramétrico para crear representaciones de nodos que no requiere entrenamiento de parámetros. El NAFS extrae las características de cada nodo considerando sus vecinos y luego combina adaptativamente dichas características para formar la representación final.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 9): Asesor Experto de múltiples estrategias (I)

Creación de un modelo de restricción de tendencia de velas (Parte 9): Asesor Experto de múltiples estrategias (I)

Hoy, exploraremos las posibilidades de incorporar múltiples estrategias en un Asesor Experto (Expert Advisor, EA) utilizando MQL5. Los asesores expertos ofrecen capacidades más amplias que solo indicadores y scripts, lo que permite enfoques comerciales más sofisticados que pueden adaptarse a las condiciones cambiantes del mercado. Encuentre más información en este artículo de discusión.
preview
Redes neuronales en el trading: Transformador contrastivo de patrones (Final)

Redes neuronales en el trading: Transformador contrastivo de patrones (Final)

En el último artículo de nuestra serie, analizamos el framework Atom-Motif Contrastive Transformer (AMCT), que usa el aprendizaje contrastivo para identificar patrones clave a todos los niveles, desde los elementos básicos hasta las estructuras complejas. En este artículo, continuaremos con la implementación de los enfoques AMCT usando MQL5.
preview
Obtenga una ventaja sobre cualquier mercado (Parte V): Datos alternativos de FRED (Federal Reserve Economic Data) sobre el EURUSD

Obtenga una ventaja sobre cualquier mercado (Parte V): Datos alternativos de FRED (Federal Reserve Economic Data) sobre el EURUSD

En el debate de hoy, utilizamos datos diarios alternativos de la Reserva Federal de St. Louis sobre el índice amplio del dólar estadounidense y una colección de otros indicadores macroeconómicos para predecir el tipo de cambio futuro del EURUSD. Lamentablemente, aunque los datos parecen tener una correlación casi perfecta, no logramos obtener ninguna mejora material en la precisión de nuestro modelo, lo que posiblemente nos sugiere que los inversores podrían estar mejor si utilizan cotizaciones de mercado ordinarias.
preview
Métodos de optimización de la biblioteca ALGLIB (Parte I)

Métodos de optimización de la biblioteca ALGLIB (Parte I)

En este artículo nos familiarizaremos con los métodos de optimización de la biblioteca ALGLIB para MQL5. El artículo incluye ejemplos sencillos e ilustrativos de la aplicación de ALGLIB para resolver problemas de optimización, lo que hará que el proceso de dominio de los métodos resulte lo más accesible posible. Asimismo, analizaremos con detalle la conectividad de algoritmos como BLEIC, L-BFGS y NS y resolveremos un sencillo problema de prueba basado en ellos.
preview
Ejemplo de nuevo Indicador y LSTM condicional

Ejemplo de nuevo Indicador y LSTM condicional

Este artículo explora el desarrollo de un Asesor Experto (Expert Advisor, EA) para trading automatizado que combina el análisis técnico con predicciones de aprendizaje profundo.
preview
Desarrollamos un asesor experto multidivisa (Parte 19): Creando las etapas implementadas en Python

Desarrollamos un asesor experto multidivisa (Parte 19): Creando las etapas implementadas en Python

Hasta ahora, hemos analizado la automatización del inicio de los procedimientos de optimización secuencial de los asesores expertos exclusivamente en el simulador de estrategias estándar. Pero, ¿qué ocurrirá si, entre una ejecución y otra, queremos procesar los datos ya adquiridos con otras herramientas? Hoy intentaremos añadir la posibilidad de crear nuevos pasos de optimización ejecutados por programas escritos en Python.
preview
Análisis de múltiples símbolos con Python y MQL5 (Parte I): Fabricantes de circuitos integrados del NASDAQ

Análisis de múltiples símbolos con Python y MQL5 (Parte I): Fabricantes de circuitos integrados del NASDAQ

Acompáñenos mientras debatimos cómo puede utilizar la IA para optimizar el tamaño de sus posiciones y las cantidades de sus órdenes para maximizar la rentabilidad de su cartera. Mostraremos cómo identificar algorítmicamente una cartera óptima y adaptar su cartera a sus expectativas de rentabilidad o niveles de tolerancia al riesgo. En este debate, utilizaremos la biblioteca SciPy y el lenguaje MQL5 para crear una cartera óptima y diversificada utilizando todos los datos de que disponemos.
preview
DoEasy. Funciones de servicio (Parte 3): Patrón "Barra exterior"

DoEasy. Funciones de servicio (Parte 3): Patrón "Barra exterior"

En este artículo desarrollaremos el patrón Price Action "Barra exterior" en la biblioteca DoEasy y optimizaremos los métodos de acceso a la gestión de los patrones de precios. Además, trabajaremos en la corrección de los fallos y errores detectados durante las pruebas de la biblioteca.
preview
Scalping Orderflow en MQL5

Scalping Orderflow en MQL5

Este Asesor Experto de MetaTrader 5 implementa una estrategia Scalping Orderflow con gestión avanzada de riesgos. Utiliza múltiples indicadores técnicos para identificar oportunidades de negociación basadas en los desequilibrios del flujo de órdenes (Orderflow). Las pruebas retrospectivas muestran una rentabilidad potencial, pero resaltan la necesidad de una mayor optimización, especialmente en la gestión de riesgos y en los ratios de resultados comerciales. Adecuado para operadores experimentados, requiere pruebas y comprensión exhaustivas antes de la implementación en vivo.
preview
Redes neuronales en el trading: Enfoque sin máscara para la predicción del movimiento de precios

Redes neuronales en el trading: Enfoque sin máscara para la predicción del movimiento de precios

En este artículo nos familiarizaremos con el método Mask-Attention-Free Transformer (MAFT) y su aplicación en el ámbito del trading. A diferencia de los Transformers tradicionales, que requieren el enmascaramiento de los datos durante el procesamiento de la secuencia, el MAFT optimiza el proceso de atención eliminando la necesidad de enmascaramiento, lo que mejora significativamente la eficiencia computacional.
preview
Optimización del modelo de nubes atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Práctica

Optimización del modelo de nubes atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Práctica

En este artículo, seguiremos profundizando en la aplicación del algoritmo ACMO (Atmospheric Cloud Model Optimisation). En particular, discutiremos dos aspectos clave: el movimiento de las nubes hacia regiones de bajas presiones y la modelización del proceso de lluvia, incluida la inicialización de las gotas y su distribución entre las nubes. También analizaremos otras técnicas que desempeñan un papel importante a la hora de gestionar el estado de las nubes y garantizar su interacción con el entorno.
preview
HTTP y Connexus (Parte 2): Comprensión de la arquitectura HTTP y el diseño de bibliotecas

HTTP y Connexus (Parte 2): Comprensión de la arquitectura HTTP y el diseño de bibliotecas

Este artículo explora los fundamentos del protocolo HTTP, cubriendo los métodos principales (GET, POST, PUT, DELETE), los códigos de estado y la estructura de las URL. Además, presenta el inicio de la construcción de la librería Conexus con las clases CQueryParam y CURL, que facilitan la manipulación de URLs y parámetros de consulta en peticiones HTTP.
preview
Redes neuronales en el trading: Superpoint Transformer (SPFormer)

Redes neuronales en el trading: Superpoint Transformer (SPFormer)

En este artículo, nos familiarizaremos con un método de segmentación de objetos 3D basado en el Superpoint Transformer (SPFormer), que elimina la necesidad de agregar datos intermedios, lo cual acelera el proceso de segmentación y mejora el rendimiento del modelo.
preview
Reimaginando las estrategias clásicas en MQL5 (Parte III): Previsión del FTSE 100

Reimaginando las estrategias clásicas en MQL5 (Parte III): Previsión del FTSE 100

En esta serie de artículos, revisaremos estrategias de negociación muy conocidas para averiguar si podemos mejorarlas utilizando la IA. En el artículo de hoy, exploraremos el FTSE 100 e intentaremos predecir el índice utilizando una parte de los valores individuales que lo componen.
preview
Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte IV): Apilamiento de modelos

Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte IV): Apilamiento de modelos

Hoy demostraremos cómo se pueden crear aplicaciones comerciales impulsadas por IA capaces de aprender de sus propios errores. Demostraremos una técnica conocida como apilamiento, mediante la cual usamos 2 modelos para hacer 1 predicción. El primer modelo suele ser un alumno más débil, y el segundo modelo suele ser un modelo más potente que aprende los residuos de nuestro alumno más débil. Nuestro objetivo es crear un conjunto de modelos, para lograr, con suerte, una mayor precisión.
preview
Desarrollo de un sistema de repetición (Parte 77): Un nuevo Chart Trade (IV)

Desarrollo de un sistema de repetición (Parte 77): Un nuevo Chart Trade (IV)

En este artículo, explicaré algunos detalles y precauciones que debes tener en cuenta al crear un protocolo de comunicación. Son cosas bastante básicas y simples. No voy a profundizar demasiado en este artículo. Pero es necesario que comprendas su contenido para entender lo que sucederá en el receptor.
preview
Del básico al intermedio: Definiciones (II)

Del básico al intermedio: Definiciones (II)

En este artículo, veremos y exploraremos un poco más sobre la directiva #define, pero esta vez nos centraremos en su segunda forma de utilización. Es decir, la creación de macros. Como sé que este tema puede resultar un poco complicado al principio, he decidido utilizar una aplicación que ya hemos estado explorando desde hace algún tiempo. Espero que disfrutes del contenido de este artículo.
preview
Obtenga una ventaja sobre cualquier mercado (Parte IV): Índices CBOE de volatilidad del euro y el oro

Obtenga una ventaja sobre cualquier mercado (Parte IV): Índices CBOE de volatilidad del euro y el oro

Analizaremos datos alternativos curados por el 'Chicago Board Of Options Exchange' (CBOE) para mejorar la precisión de nuestras redes neuronales profundas al pronosticar el símbolo XAUEUR (oro).
preview
Del básico al intermedio: Definiciones (I)

Del básico al intermedio: Definiciones (I)

En este artículo, haremos cosas que para muchos parecerán extrañas y totalmente fuera de contexto, pero que, si se aplican bien, harán que tu aprendizaje sea mucho más divertido y emocionante, ya que podemos construir cosas bastante interesantes basándonos en lo que se muestra aquí, lo que permite una mejor asimilación de la sintaxis del lenguaje MQL5. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
preview
Implementación de breakeven en MQL5 (Parte 1): Clase base y breakeven por puntos fijos

Implementación de breakeven en MQL5 (Parte 1): Clase base y breakeven por puntos fijos

En este artículo se estudia el uso del breakeven aplicado a estrategias automáticas en MQL5. Se parte de una explicación sencilla sobre qué es, cómo se implementa y cuáles son sus posibles variantes. Luego, se integra la funcionalidad dentro de un bot de Order Blocks, creado en el último artículo sobre gestión de riesgo. Para evaluar su comportamiento, se ejecutaron dos backtest bajo condiciones específicas: uno sin breakeven y otro con esta función activa.
preview
Optimización del modelo de nubes atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Teoría

Optimización del modelo de nubes atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Teoría

Este artículo se centra en el algoritmo metaheurístico Atmosphere Clouds Model Optimisation (ACMO), que modela el comportamiento de las nubes para resolver problemas de optimización. El algoritmo usa los principios de generación, movimiento y propagación de nubes, adaptándose a las "condiciones meteorológicas" del espacio de soluciones. El artículo revela cómo una simulación meteorológica del algoritmo encuentra soluciones óptimas en un espacio de posibilidades complejo y detalla las etapas del ACMO, incluida la preparación del "cielo", el nacimiento de las nubes, su movimiento y la concentración de la lluvia.
preview
Del básico al intermedio: Recursividad

Del básico al intermedio: Recursividad

En este artículo, veremos un concepto de programación muy interesante y bastante divertido, aunque debe ser tratado con extremo respeto, ya que un mal uso o un mal entendimiento del mismo convierte programas relativamente simples en algo innecesariamente complicado. Aunque, el buen uso y la perfecta adecuación en situaciones igualmente adecuadas convierten la recursividad en un gran aliado para resolver cuestiones que, de otra forma, serían mucho más trabajosas y demoradas. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe ser considerado como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
preview
Características del Wizard MQL5 que debe conocer (Parte 40): SAR parabólico

Características del Wizard MQL5 que debe conocer (Parte 40): SAR parabólico

El SAR parabólico (Stop-and-Reversal, SAR) es un indicador de confirmación de tendencia y de puntos de finalización de tendencia. Debido a que es un rezagado en la identificación de tendencias, su propósito principal ha sido posicionar trailing stop loss en posiciones abiertas. Sin embargo, exploramos si realmente podría usarse como una señal de Asesor Experto, gracias a clases de señales personalizadas de Asesores Expertos ensamblados por un asistente.
preview
Redes neuronales en el trading: Estudio de la estructura local de datos

Redes neuronales en el trading: Estudio de la estructura local de datos

La identificación y preservación eficaz de la estructura local de los datos del mercado en condiciones de ruido es una tarea importante en el trading. El uso del mecanismo de Self-Attention ha ofrecido buenos resultados en el procesamiento de estos datos, pero el método clásico no tiene en cuenta las características locales de la estructura original. En este artículo, le propongo familiarizarse con un algoritmo que considera estas dependencias estructurales.
OSZAR »