MQL5言語での取引システムの自動化に関する記事

icon

多種多様なアイデアを核としたトレーディングシステムに関する記事をご覧ください。統計とロウソク足チャートのパターンをどのように使用するか、どのようにシグナルをフィルタするか、どこでセマフォインディケータを使用するかを学べます。

MQL5ウィザードを使用すれば、プログラミングなしでロボットを作成して、トレーディングのアイデアを素早く確認できます。遺伝的アルゴリズムについて知るためにウィザードを使用してください。

新しい記事を追加
最新 | ベスト
preview
取引におけるニューラルネットワーク:一般化3次元指示表現セグメンテーション

取引におけるニューラルネットワーク:一般化3次元指示表現セグメンテーション

市場の状況を分析する際には、それを個別のセグメントに分割し、主要なトレンドを特定します。しかし、従来の分析手法は一つの側面に偏りがちで、全体像の適切な把握を妨げます。この記事では、複数のオブジェクトを選択できる手法を通じて、状況をより包括的かつ多層的に理解する方法を紹介します。
preview
MetaTrader 5を使用してPythonでカスタム通貨ペアパターンを見つける

MetaTrader 5を使用してPythonでカスタム通貨ペアパターンを見つける

外国為替市場には繰り返しパターンや規則性が存在するのでしょうか。私は、PythonとMetaTrader 5を使って独自のパターン分析システムを構築することに決めました。これは、外国為替市場を攻略するための、数学とプログラミングの一種の融合です。
preview
MetaTrader 5を使用したPythonの高頻度裁定取引システム

MetaTrader 5を使用したPythonの高頻度裁定取引システム

この記事では、ブローカーの観点から見て合法であり、外国為替市場において数千もの合成価格を生成・分析し、利益を上げるために取引をおこなう裁定取引システムの構築方法について解説します。
preview
人工散布アルゴリズム(ASHA)

人工散布アルゴリズム(ASHA)

この記事では、一般的な最適化問題を解決するために開発された新しいメタヒューリスティック手法、人工散布アルゴリズム(ASHA: Artificial Showering Algorithm)を紹介します。ASHAは、水の流れと蓄積のプロセスをシミュレーションすることで、各リソース単位(水)が最適解を探索する「理想フィールド」という概念を構築します。本稿では、ASHAがフローと蓄積の原理をどのように適応させ、探索空間内でリソースを効率的に割り当てるかを解説し、その実装およびテスト結果を紹介します。
preview
取引におけるニューラルネットワーク:価格変動予測におけるマスクアテンションフリーアプローチ

取引におけるニューラルネットワーク:価格変動予測におけるマスクアテンションフリーアプローチ

この記事では、Mask-Attention-Free Transformer (MAFT)法と、それを取引分野に応用する可能性について説明します。従来のTransformerはシーケンスを処理する際にマスキングを必要としますが、MAFTはこのマスキングを不要にすることでアテンション処理を最適化し、計算効率を大幅に向上させています。
preview
取引におけるニューラルネットワーク:Superpoint Transformer (SPFormer)

取引におけるニューラルネットワーク:Superpoint Transformer (SPFormer)

本記事では、中間データの集約を不要とするSuperpoint Transformer (SPFormer)に基づく3Dオブジェクトのセグメンテーション手法を紹介します。これによりセグメンテーション処理の高速化とモデル性能の向上が実現されます。
preview
取引におけるニューラルネットワーク:データの局所構造の探索

取引におけるニューラルネットワーク:データの局所構造の探索

ノイズの多い状況下で市場データの局所構造を効果的に識別・保持することは、取引において極めて重要な課題です。自己アテンション(Self-Attention)メカニズムの活用は、このようなデータの処理において有望な結果を示していますが、従来のアプローチでは基盤となる構造の局所的な特性が考慮されていません。この記事では、こうした構造的依存関係を組み込むことが可能なアルゴリズムを紹介します。
preview
多通貨エキスパートアドバイザーの開発(第18回):将来期間を考慮したグループ選択の自動化

多通貨エキスパートアドバイザーの開発(第18回):将来期間を考慮したグループ選択の自動化

これまで手動でおこなっていた手順の自動化を引き続き進めていきましょう。今回は、第2段階の自動化、すなわち取引戦略の単一インスタンスの最適なグループ選定に立ち返り、フォワード期間におけるインスタンスの結果を考慮する機能を追加します。
preview
取引におけるニューラルネットワーク:シーン認識オブジェクト検出(HyperDet3D)

取引におけるニューラルネットワーク:シーン認識オブジェクト検出(HyperDet3D)

ハイパーネットワークを活用した新しいオブジェクト検出アプローチをご紹介します。ハイパーネットワークはメインモデルの重みを生成し、現在の市場状況の特性を考慮に入れることができます。この手法により、モデルはさまざまな取引条件に適応し、予測精度の向上が可能になります。
preview
雲モデル最適化(ACMO):理論

雲モデル最適化(ACMO):理論

この記事は、最適化問題を解決するために雲の挙動をシミュレートするメタヒューリスティックな雲モデル最適化(ACMO: Atmosphere Clouds Model Optimization)アルゴリズムについて解説します。このアルゴリズムは、雲の生成、移動、拡散といった自然現象の原理を用いて、解空間内の「気象条件」に適応します。この記事では、ACMOの気象的なシミュレーションが、複雑な可能性空間の中でどのようにして最適解を導き出すかを明らかにし、「空」の準備、雲の生成、雲の移動、そして雨の集約といった各ステップを詳しく説明します。
preview
アーチェリーアルゴリズム(AA)

アーチェリーアルゴリズム(AA)

この記事では、アーチェリーに着想を得た最適化アルゴリズムについて詳しく検討し、有望な「矢」の着地点を選定するメカニズムとしてルーレット法の活用に焦点を当てます。この手法により、解の質を評価し、さらなる探索に最も有望な位置を選び出すことが可能になります。
preview
取引におけるニューラルネットワーク:点群用Transformer (Pointformer)

取引におけるニューラルネットワーク:点群用Transformer (Pointformer)

この記事では、点群におけるオブジェクト検出問題を解決するためのアテンションを用いたアルゴリズムについて解説します。点群におけるオブジェクト検出は、多くの現実世界の応用において極めて重要です。
preview
取引におけるニューラルネットワーク:点群の階層的特徴量学習

取引におけるニューラルネットワーク:点群の階層的特徴量学習

点群から特徴量を抽出するアルゴリズムの研究を続けます。この記事では、PointNet手法の効率を高めるメカニズムについて解説します。
preview
注文板に基づいた取引システムの開発(第1回):インジケーター

注文板に基づいた取引システムの開発(第1回):インジケーター

市場の厚みは、特に高頻度取引(HFT)アルゴリズムにおいて、高速な取引を実行するために不可欠な要素です。本連載では、多くの取引可能な銘柄に対してブローカー経由で取得できるこの種の取引イベントについて取り上げます。まずは、チャート上に直接表示されるヒストグラムのカラーパレット、位置、サイズをカスタマイズ可能なインジケーターから始めます。次に、特定の条件下でこのインジケーターをテストするためのBookEventイベントの生成方法について解説します。今後の記事では、価格分布データの保存方法や、そのデータをストラテジーテスターで活用する方法などのトピックも取り上げる予定です。
preview
取引におけるニューラルネットワーク:点群解析(PointNet)

取引におけるニューラルネットワーク:点群解析(PointNet)

直接的な点群解析は、不要なデータの増加を避け、分類やセグメンテーションタスクにおけるモデルの性能を向上させます。このような手法は、元データの摂動に対して高い性能と堅牢性を示します。
preview
取引におけるニューラルネットワーク:階層型ベクトルTransformer(最終回)

取引におけるニューラルネットワーク:階層型ベクトルTransformer(最終回)

階層的ベクトルTransformer法の研究を引き続き進めていきます。本記事では、モデルの構築を完了し、実際の履歴データを用いて訓練およびテストをおこないます。
preview
MQL5でパラボリックSARと単純移動平均(SMA)を使用した高速取引戦略アルゴリズムを実装する

MQL5でパラボリックSARと単純移動平均(SMA)を使用した高速取引戦略アルゴリズムを実装する

この記事では、パラボリックSARと単純移動平均(SMA)インジケーターを活用し、応答性の高い取引戦略を構築する高速取引型エキスパートアドバイザー(EA)をMQL5で開発します。インジケーターの使用方法、シグナルの生成、テストおよび最適化プロセスなど、戦略の実装について詳しく解説します。
preview
多通貨エキスパートアドバイザーの開発(第17回):実際の取引に向けたさらなる準備

多通貨エキスパートアドバイザーの開発(第17回):実際の取引に向けたさらなる準備

現在、EAはデータベースを利用して、取引戦略の各インスタンスの初期化文字列を取得しています。しかし、データベースは非常に大容量であり、実際のEAの動作には不要な情報も多数含まれています。そこで、データベースへの接続を必須とせずにEAを機能させる方法を考えてみましょう。
preview
取引におけるニューラルネットワーク:階層型ベクトルTransformer (HiVT)

取引におけるニューラルネットワーク:階層型ベクトルTransformer (HiVT)

マルチモーダル時系列の高速かつ正確な予測のために開発された階層的ベクトルTransformer (HiVT: Hierarchical Vector Transformer)メソッドについて詳しく説明します。
preview
取引におけるニューラルネットワーク:統合軌道生成モデル(UniTraj)

取引におけるニューラルネットワーク:統合軌道生成モデル(UniTraj)

エージェントの行動を理解することはさまざまな分野で重要ですが、ほとんどの手法は特定のタスク(理解、ノイズ除去、予測)に焦点を当てており、そのため実際のシナリオでは効果的に活用できないことが多いです。この記事では、さまざまな問題を解決するために適応可能なモデルについて説明します。
preview
リプレイシステムの開発(第61回):サービスの再生(II)

リプレイシステムの開発(第61回):サービスの再生(II)

この記事では、リプレイ/シミュレーションシステムをより効率的かつ安全に動作させるための変更点について解説します。また、クラスを最大限に活用したいと考えている方にも役立つ情報を取り上げます。さらに、クラスを使用する際にコードのパフォーマンスを低下させるMQL5特有の問題点を取り上げ、それに対する具体的な解決策についても説明します。
preview
知っておくべきMQL5ウィザードのテクニック(第52回):ACオシレーター

知っておくべきMQL5ウィザードのテクニック(第52回):ACオシレーター

ACオシレーター(アクセラレーターオシレーター、Accelerator Oscillator)は、価格のモメンタムの「速度」だけでなく、その「加速」を追跡する、ビル・ウィリアムズによって開発されたインジケーターの一つです。最近の記事で取り上げたオーサムオシレーター(AO)と非常によく似ていますが、単なるスピードではなく加速に重点を置くことで、遅延の影響を回避しようとしています。本記事では、毎回のようにこのオシレーターからどのようなパターンが得られるかを分析し、ウィザード形式で構築されたエキスパートアドバイザー(EA)を通じて、それらが実際の取引においてどのような意味を持ち得るかを検証します。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第3回):ダイナミックトレンドフォローと平均回帰戦略

MQL5で自己最適化エキスパートアドバイザーを構築する(第3回):ダイナミックトレンドフォローと平均回帰戦略

金融市場は一般的に、「レンジ相場」または「トレンド相場」のいずれかに分類されます。このような静的な市場の見方は、短期的な取引においては判断を容易にしてくれるかもしれません。しかし、実際の市場の動きとはかけ離れている側面もあります。この記事では、金融市場がこれら2つのモードをどのように移行するのかを探り、その理解を活かしてアルゴリズム取引戦略への自信をどのように高められるのかを考察します。
preview
知っておくべきMQL5ウィザードのテクニック(第51回):SACによる強化学習

知っておくべきMQL5ウィザードのテクニック(第51回):SACによる強化学習

Soft Actor Criticは、Actorネットワーク1つとCriticネットワーク2つ、合計3つのニューラルネットワークを用いる強化学習アルゴリズムです。これらのモデルは、CriticがActorネットワークの予測精度を高めるように設計された、いわばマスタースレーブの関係で連携します。本連載では、ONNXの導入も兼ねて、こうした概念を、ウィザード形式で構築されたエキスパートアドバイザー(EA)内のカスタムシグナルとしてどのように実装・活用できるかを探っていきます。
preview
MQL5取引ツールキット(第5回):ポジション関数による履歴管理EX5ライブラリの拡張

MQL5取引ツールキット(第5回):ポジション関数による履歴管理EX5ライブラリの拡張

エクスポート可能なEX5関数を作成して、過去のポジションデータを効率的にクエリおよび保存する方法を解説します。このステップバイステップのガイドでは、直近にクローズされたポジションの主要なプロパティを取得するモジュールを開発し、HistoryManagement EX5ライブラリを拡張していきます。対象となるプロパティには、純利益、取引時間、ピップ単位でのストップロスやテイクプロフィット、利益値、その他多くの重要な情報が含まれます。
preview
Candlestick Trend Constraintモデルの構築(第10回):戦略的ゴールデンクロスとデスクロス(EA)

Candlestick Trend Constraintモデルの構築(第10回):戦略的ゴールデンクロスとデスクロス(EA)

移動平均線のクロスオーバーに基づくゴールデンクロスおよびデッドクロス戦略は、長期的な市場トレンドを見極める上で最も信頼性の高い指標の一つであることをご存知でしょうか。ゴールデンクロスは、短期移動平均線が長期移動平均線を上回るときに強気トレンドの到来を示します。一方、デッドクロスは、短期移動平均線が長期線を下回ることで弱気トレンドの兆候を示します。これらの戦略は非常にシンプルでありながら効果的ですが、手動で運用すると機会の逸失やエントリーの遅れが発生しやすいという課題があります。しかし、MQL5を活用してTrend Constraintエキスパートアドバイザー(EA)内で自動化することで、これらの戦略は独立して機能し、市場の反転に迅速かつ効率的に対応できるようになります。また、制約付きの戦略と組み合わせることで、広範なトレンドと整合性を保つことができます。このアプローチにより、反転戦略とトレンドフォロー戦略のシームレスな統合が実現され、精密なエントリーと一貫したパフォーマンス向上をもたらします。
preview
古典的な戦略を再構築する(第13回):移動平均線のクロスオーバーにおける遅延の最小化

古典的な戦略を再構築する(第13回):移動平均線のクロスオーバーにおける遅延の最小化

移動平均クロスオーバーは、私たちのコミュニティにおけるトレーダーの間で広く知られている戦略ですが、その基本的な仕組みは誕生以来ほとんど変化していません。本稿では、この戦略に存在する“遅延”を最小限に抑えることを目的とした、わずかながらも重要な改良について紹介します。元の戦略を愛用しているトレーダーの方々にも、今回ご紹介する洞察をもとに、戦略の見直しを検討していただければ幸いです。同一の期間を持つ2つの移動平均を使用することで、戦略の根本的な原則を損なうことなく、遅延を大幅に削減することが可能になります。
preview
MQL5での取引戦略の自動化(第3回):ダイナミック取引管理のためのZone Recovery RSIシステム

MQL5での取引戦略の自動化(第3回):ダイナミック取引管理のためのZone Recovery RSIシステム

この記事では、MQL5を使ってZone Recovery RSI EAシステムを構築し、RSIシグナルによって取引を開始し、損失を管理するためのリカバリーストラテジーを実装します。取引エントリー、リカバリーロジック、ポジション管理を自動化するために、ZoneRecoveryクラスを作成します。この記事の最後では、EAのパフォーマンスを最適化し、その有効性を高めるためのバックテストの洞察を紹介します。
preview
プライスアクション分析ツールキットの開発(第6回):Mean Reversion Signal Reaper

プライスアクション分析ツールキットの開発(第6回):Mean Reversion Signal Reaper

いくつかの概念は一見するとシンプルに思えるかもしれませんが、実際にそれを形にするのは想像以上に難しいことがあります。この記事では、平均回帰(Mean Reversion)戦略を用いて市場を巧みに分析するエキスパートアドバイザー(EA)の自動化に取り組んだ、革新的なアプローチをご紹介します。この魅力的な自動化プロセスの奥深さを、一緒に紐解いていきましょう。
preview
出来高ベースの取引システムを構築し最適化する方法(チャイキンマネーフロー:CMF)

出来高ベースの取引システムを構築し最適化する方法(チャイキンマネーフロー:CMF)

この記事では、出来高ベースの指標であるチャイキンマネーフロー(CMF)の構築方法、計算方法、使用方法を説明した上で、その概要を説明します。カスタムインジケーターの構築方法を理解します。使用できるいくつかの簡単な戦略を共有し、それらをテストしてどれが優れているかを理解します。
preview
ニュース取引が簡単に(第6回):取引の実施(III)

ニュース取引が簡単に(第6回):取引の実施(III)

この記事では、IDに基づいて個々のニュースイベントをフィルターする関数を実装します。さらに、以前のSQLクエリを改善し、追加情報が提供されたり、クエリの実行時間が短縮されるようになります。さらに、これまでの記事で作成したコードを機能的なものにします。
preview
独自のLLMをEAに統合する(第5部):LLMを使った取引戦略の開発とテスト(III) - アダプタチューニング

独自のLLMをEAに統合する(第5部):LLMを使った取引戦略の開発とテスト(III) - アダプタチューニング

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じてファインチューニングし、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
preview
MQL5での取引戦略の自動化(第2回):一目均衡表とオーサムオシレーターを備えた雲抜けシステム

MQL5での取引戦略の自動化(第2回):一目均衡表とオーサムオシレーターを備えた雲抜けシステム

この記事では、一目均衡表とオーサムオシレーター(Awesome Oscillator)を活用し、「雲抜け戦略」を自動化するエキスパートアドバイザー(EA)を作成します。インジケーターハンドルの初期化、ブレイクアウト条件の検出、自動売買におけるエントリーおよびエグジットの実装手順について、段階的に解説します。さらに、トレーリングストップやポジション管理ロジックを組み込むことで、EAのパフォーマンスと市場適応力を高める方法にも触れます。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第2回):USDJPYスキャルピング戦略

MQL5で自己最適化エキスパートアドバイザーを構築する(第2回):USDJPYスキャルピング戦略

今日は私たちと一緒にUSDJPYペアを中心とした取引戦略の構築に挑戦するしましょう。日足のローソク足パターンは、潜在的により強い動きがあるため、日足パターンで形成されるローソク足パターンを取引します。私たちの当初の戦略は利益を生み、これにより獲得した資本を保護するために、戦略を継続的に改良し、安全性をさらに高める努力を続けることができました。
preview
プライスアクション分析ツールキットの開発(第5回):Volatility Navigator EA

プライスアクション分析ツールキットの開発(第5回):Volatility Navigator EA

市場の方向性を判断するのは簡単ですが、いつエントリーするかを知るのは難しい場合があります。連載「プライスアクション分析ツールキットの開発」の一環として、エントリーポイント、テイクプロフィットレベル、ストップロスの配置を提供する別のツールを紹介できることを嬉しく思います。これを実現するために、MQL5プログラミング言語を利用しました。この記事では、各ステップについて詳しく見ていきましょう。
preview
古典的な戦略を再構築する(第12回):EURUSDブレイクアウト戦略

古典的な戦略を再構築する(第12回):EURUSDブレイクアウト戦略

MQL5で収益性の高いブレイクアウト取引戦略を構築する挑戦に、ぜひご参加ください。EURUSDペアを選択し、時間枠で価格ブレイクアウトを取引しましたが、私たちのシステムでは偽のブレイクアウトと真のトレンドの始まりを区別するのが難しかったです。そこで、損失を最小限に抑えながら利益を増やすことを目的としたフィルターをシステムに組み込みました。最終的にはシステムを収益性の高いものにし、誤ったブレイクアウトに対する耐性を高めることに成功しました。
preview
出来高による取引の洞察:トレンドの確認

出来高による取引の洞察:トレンドの確認

強化型トレンド確認手法は、プライスアクション、出来高分析、そして機械学習を組み合わせることで、真の市場動向を見極めることを目的としています。この手法では、取引を検証するために、価格のブレイクアウトと平均比50%以上の出来高急増という2つの条件を満たす必要があります。さらに、追加の確認手段としてLSTMニューラルネットワークを活用します。システムはATR (Average True Range)に基づいたポジションサイズ設定と動的リスク管理を採用しており、誤ったシグナルを排除しつつ、多様な市場環境に柔軟に対応できる設計となっています。
preview
MQL5取引ツールキット(第4回):履歴管理EX5ライブラリの開発

MQL5取引ツールキット(第4回):履歴管理EX5ライブラリの開発

詳細なステップバイステップのアプローチで拡張履歴管理EX5ライブラリを作成し、MQL5を使用してクローズされたポジション、注文、取引履歴を取得、処理、分類、並べ替え、分析、管理する方法を学びます。
preview
MQL5入門(第10回):MQL5の組み込みインジケーターの操作に関する初心者向けガイド

MQL5入門(第10回):MQL5の組み込みインジケーターの操作に関する初心者向けガイド

この記事では、プロジェクトベースのアプローチを使用してRSIベースのエキスパートアドバイザー(EA)を作成する方法に焦点を当て、MQL5の組み込みインジケーターの活用方法を紹介します。RSI値を取得して活用し、流動性スイープに対応し、チャートオブジェクトを使用して取引の視覚化を強化する方法を学びます。さらに、パーセンテージベースのリスク設定、リスク報酬比率の実装、利益確保のためのリスク修正など、効果的なリスク管理についても解説します。
preview
ケリー基準とモンテカルロシミュレーションを使用したポートフォリオリスクモデル

ケリー基準とモンテカルロシミュレーションを使用したポートフォリオリスクモデル

数十年にわたり、トレーダーは破産リスクを最小限に抑えつつ長期的な資産成長を最大化する手法として、ケリー基準の公式を活用してきました。しかし、単一のバックテスト結果に基づいてケリー基準を盲目的に適用することは、個人トレーダーにとって非常に危険です。というのも、実際の取引では時間の経過とともに取引優位性が薄れ、過去の実績は将来の結果を保証するものではないからです。本記事では、Pythonによるモンテカルロシミュレーションの結果を取り入れ、MetaTrader 5上で1つ以上のエキスパートアドバイザー(EA)にケリー基準を現実的に適用するためのリスク配分アプローチを紹介します。
OSZAR »